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Abstract: Optoelectronic tweezers is a new technique to trap and manipulate particles with sizes ranging from tens of nanometers to 
hundreds of micrometers. Using optically-controlled dielectrophoretic force on a photoconductive electrode, optoelectronic tweezers 
enables complex, dynamic manipulation functions using light intensities up to 100,000 times lower than that of conventional laser 
tweezers. 
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1. Introduction 
The ability to manipulate small objects such as cells, 
colloidal particles, nanowires and nanoparticles, and 
macromolecules in a non-contact manner opens up many 
new opportunities in bioscience and nanotechnology. 
Several micromanipulation mechanisms have been 
studied over the years, including optical tweezers, 
electrophoresis, dielectrophoresis (DEP), magnetic 
tweezers, acoustic and hydrodynamic forces. Among 
them, the optical tweezers [1] and the DEP [2] are 
commonly used to manipulate non-charged particles. 
Both use the interaction between a dipole and a non-
uniform electromagnetic field. In optical tweezers, the 
non-uniform field is created by a tightly focused optical 
beam using an objective lens with a high numerical 
aperture. In DEP, it is generated by electrical 
microelectrodes patterned on a substrate. Both forces are 
proportional to the gradient of the intensity (square of the 
field). The force is usually positive (attractive) in optical 
tweezers, but it can be either positive (attractive) or 
negative (repulsive) for DEP, depending on the complex 
dielectric function of the particles and the media and the 
bias frequency. Simultaneous trapping of multiple 
objects are achieved by holographic optical tweezers [3] 
and matrix electrode arrays with integrated CMOS 
decoders [4]. 
 The optical tweezers have revolutionized our 
understanding of molecular motors [5] and had a major 
impact in colloidal science [3]. However, they also have 
some drawbacks. The high optical power requirement (~ 
1 mW/trap), especially in the visible wavelength, can 
result in optical and/or thermal damage to live biological 
specimens [6] and nanoparticles and nanowires. DEP can 
trap particles with sizes ranging from approximately 1 
mm down to 14 nm [7]. Unlike optical tweezers, 
dielectrophoresis can have large manipulation areas, 
limited only by the size of the device. However, DEP 
needs microfabricated electrodes with hardwired 
electrical connection for particle manipulation, limiting 
its flexibility. 
 We have proposed a new optical manipulation 
technique that combines the flexibility of optical 
tweezers with the power of DEP without their 
drawbacks. This technique, called optoelectronic 
tweezers (OET), is shown schematically in Fig.  1 [8]. 

Instead of hardwired electrodes, OET uses a projected 
light pattern on a photoconductive surface to generate 
“virtual electrodes”. Together with an ac voltage bias 
across the sample chamber, the DEP forces are initiated 
optically. Thanks to the photoconductive gain, the optical 
power requirement is reduced by about 100,000 times 
compared with optical tweezers. This enables the 
formation of large trap arrays. It also permits the use of 
low-cost light source such as lamps or light-emitting 
diodes (LED) as optical coherence is not required. 
Indeed we have demonstrated an individually 
addressable array with 15,000 particle traps over an area 
of 1.3 mm2 using a single LED source and a digital 
micromirror device (DMD) spatial light modulator [8]. 
The trapped particles include polystyrene beads [9], E. 
coli bacteria [10], and red and white blood cells [8]. 
     

 
Fig.  1. Schematic of optoelectronic tweezers 
(OET) [8]. Optically patterned virtual 
electrodes for dielectrophoresis (DEP) are 
generated by a spatial light modulator. The 
example here uses a digital-micromirror-device 
(DMD) projector with an light-emitting diode 
(LED) source.  

 
 Using dynamic optical patterns, OET can also be 
used to separate particles or cells by sizes or other visual 
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Fig.  5. Schematic illustrating OET trapping of 
nanowires. When the ac voltage bias is applied, 
the nanowires are aligned vertically and trapped 
at the highest intensity spot. 

  

 
Fig.  6. Snap shots of video clips illustrating 
OET trapping and assembly of a 3x2 array of Si 
nanowires with 100 nm diameter. 

 
 We have successfully trapped individual 
semiconductor as well as metallic nanowires with 
diameters of 100 nm and length of several microns [22]. 
Doped semiconductor nanowires as well as metallic 
nanowires experience positive OET force. We have 
successfully trapped and transported single nanowires 
using a 100-μW HeNe laser source. It is interesting to 
note that even with an optical beam diameter of 10 μm, 
we are able to separate nanowires spaced by less than 1 
μm by moving the light spot. Fig.  6 shows the assembly 
of a 3x2 array of nanowires using a line-shaped light 
pattern in OET. The maximum transport speed of Si 
nanowire (100 nm diameter) is 135 μm/sec at a voltage 
bias of 20 Vpp.  
 
5. Cell Manipulation in Physiological Media 
The OET manipulation of red and white blood cells and 
HeLa cells have been previously demonstrated [26], as 
well as the selective concentration of live human B cells 
from dead cells [8]. However, the amorphous-Si-based 
OET can only operate in low-conductivity solutions (< 
0.1 S/m). Typical culture media has a conductivity of 1.5 
S/m. Thus, to manipulate cells in a conventional OET 
device, the salts that are usually present in cell culture 
media are replaced by osmotically-equivalent amounts of 
non-electrolytes to maintain the osmotic pressure on the 
cell membranes. These low-conductivity media are non-
physiological, and eventually reduce cell viability [27]. 

The usage of non-physiological media also limits many 
biological applications, such as cell culturing and 
electroporation.  
 We have proposed a single crystalline Si 
phototransistor-based OET (Ph-OET) that enables the 
manipulation of cells in highly-conductive physiological 
buffers and cell culture media [23]. The schematic 
structure of Ph-OET is shown in Fig.  7. With 100 times 
higher photoconductivity, we were able to trap HeLa and 
Jurkat cells with optical power density as low as 1 
W/cm2. A transport velocity of 35 μm/sec is achieved at 
10 W/cm2 (Fig.  8).   

 
Fig.  7. Schematic of phototransistor-OET for 
manipulating biological cells in physiological 
buffer solutions. 
  

 
Fig.  8. The maximum transport speed of 
trapped cells versus the optical power density 
illuminated on the phototransistor-OET. A 
maximum speed of 35μm/sec is achieved at a 
very low power density of 10 W/cm2. 

 
6. Conclusions 
We have described a new optical manipulation technique 
called optoelectronic tweezers (OET). It combines the 
advantages of optical tweezers and dielectrophoresis, and 
is capable of trapping and transporting colloidal particles 
with diameters of tens of nanometers to hundreds of 
micrometers. Trapping of individual semiconductor 
nanowires with 100-nm diameter has been achieved. 
Novel phototransistor-OET capable of trapping live cells 
in physiological buffer solutions is also discussed.  
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